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ABSTRACT
A proper edge coloring of a graph G is an assignment of
colors to the edges of G so that the colors of any two ad-
jacent edges are distinct. Given a graph G with a proper
edge coloring, the set of colors of a vertex v is the set of
colors assigned to the edges incident to v. Two vertices are
distinguishable if their sets of colors are distinct. An ad-
jacent vertex distinguishing (AVD) edge coloring of G is a
proper edge coloring such that every two adjacent vertices
are distinguishable. The minimum number of colors to an
AVD edge coloring of a graph G is the AVD chromatic in-
dex. There are partial results on the AVD chromatic index
for the classes of split-indifference graphs and complete split
graphs. In this paper we present the AVD chromatic index
for the remaining graphs in these classes.
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1. INTRODUCTION
In this paper, we consider simple, finite and undirected

graphs. We denote a graph G with vertex set V (G) and
edge set E(G) by G = (V (G), E(G)), and the maximum
degree of G by ∆(G). A proper edge coloring of G is an as-
sigment of colors to the edges of G so that no adjacent edges
receive the same color. The minimum number of colors for
which a graph G has a proper edge coloring is the chromatic
index of G, denoted by χ′(G). Given a proper edge coloring
of G, the set of colors of a vertex v ∈ V (G) is the set of
colors assigned to the edges incident to v, denoted by C(v).
Two vertices u and v are distinguishable when C(u) 6= C(v).
An adjacent vertex distinguishing (AVD) edge coloring of a
graph G is a proper edge coloring of G such that every two
adjacent vertices are distinguishable. Note that there is no
AVD edge coloring for the complete graph K2. The AVD
Edge Coloring Problem was introduced by Zhang et al. in
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2002 [8] and consists in determing the least number of colors
for an AVD edge coloring of a graph G, called AVD chro-
matic index and denoted χ′a(G). In the same paper, Zhang
et al. [8] mentioned, without giving more details, that some
network problems can be converted to the AVD Edge Colo-
ring Problem. They also presented the first results on the
AVD chromatic index.

Theorem 1. [8] If G is the disjoint union of n connected
components G1, G2, . . . , Gn, and |V (Gi)| ≥ 3, 1 ≤ i ≤ n,
then χ′a(G) = max{χ′a(Gi), 1 ≤ i ≤ n}.

By Theorem 1, it is sufficient to consider connected graphs
to solve the AVD Edge Coloring Problem. Hence, from now,
we consider all the graphs connected. Zhang et al. [8] also
determined the AVD chromatic index for trees, complete
graphs, cicles, and complete bipartite graphs. In the same
paper, they proposed the following conjecture.

Conjecture 2. [8] If G is a connected graph and |V (G)|
≥ 6, χ′a(G) ≤ ∆(G) + 2.

Balister et al. [1] proved the Conjecture 2 for bipartite
graphs and for every graph G with ∆(G) = 3.

Once the AVD chromatic index were determined for com-
plete graphs and some results were known for bipartite graphs,
it is interesting to consider this problem on split graphs,
since every split graph is an edge disjoint union of a com-
plete graph and a bipartite graph. Precisely, a split graph
G = [Q,S] is a graph whose vertex set can be partitioned
into a clique Q and an independent set S, where a clique
is a set of pairwise adjacent vertices and an independent
set is a set of pairwise non-adjacent vertices. A complete
split graph is a split graph G = [Q,S] where every vertex
u ∈ Q is adjacent to every vertex v ∈ S. In [7], Vilas-Bôas
and Mello proved that the Conjecture 2 is true for complete
split graphs. Let G = [Q,S] be a complete split graph.
They also show that if G has odd ∆(G) and |Q| > |S|2,
then χ′a(G) = ∆(G) + 2. If G has |Q| ≥ 2, they pro-
ved that χ′a(G) = ∆(G) + 1 when ∆(G) is even or when
|Q| ≤ |S|2 − |S|. Note that when |Q| = 1 the complete
split graph is the complete bipartite graph K1,m for which
χ′a(G) was determined by Zhang et al. [8]. Therefore, it re-
mains to determine χ′a(G) when |Q| ≥ 2, ∆(G) is odd, and
|S|2−|S| < |Q| ≤ |S|2. In this case, Vilas-Bôas and Mello [7]
conjecture that χ′a(G) = ∆(G) + 1.

In the same paper, Vilas-Bôas and Mello [7] considered the
split-indifference graphs. An indifference graph is a graph
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whose vertex set can be linearly ordered such that verti-
ces belonging to the same clique are consecutive. An split-
indifference graph is a graph that is simultaneously split and
indifference. They proved that the Conjecture 2 is true for
split-indifference graphs. Furthermore, for a split- indiffe-
rence graph G, they determined χ′a(G) when |V (G)| is even
and in some cases when |V (G)| is odd.

In this paper we conclude the work of Vilas-Bôas and
Mello [7], presenting the AVD chromatic index for the re-
maining complete split graphs and split-indifference graphs.

2. THEORETICAL FRAMEWORK
In this section, we present definitions and previous results

that are important to the development of this work.

If a graph G satisfies |E(G)| > ∆(G)
⌊

V (G)
2

⌋
, then G is

overfull. If G has a subgraph H with ∆(H) = ∆(G) and
H is overfull, then G is subgraph-overfull. The overfull and
subgraph-overfull graphs have χ′(G) = ∆(G) + 1.

A universal vertex of a graph G is a vertex of G with
degree |V (G)|−1. IfG has a universal vertex and the number

of edges in the complement of G is less than ∆(G)
2

, then G is
overfull. In 1981, Plantholt determined the chromatic index
for graphs with universal vertex, as presented in the next
theorem.

Theorem 3. [5] Let G be a graph with universal vertex.
χ′(G) = ∆(G) if, and only if, G is not overfull.

Given a graph G with a set of vertices X ⊆ V (G), the sub-
graph of G induced by X is the subgraph H = (V (H), E(H))
with V (H) = X and E(H) = {uv : u, v ∈ X ∧ uv ∈ E(G)}.
The core of a graph G, denoted Λ(G), is the set of maximum
degree vertices of G. Fournier [3] determined the chromatic
indices of graphs with acyclic G[Λ(G)].

Theorem 4. [3] If G[Λ(G)] is a forest, then χ′(G) =
∆(G).

When a graph G does not have maximum degree adja-
cent vertices, its core is an independent set and consequently
G[Λ(G)] is a forest. By Theorem 4, χ′(G) = ∆(G). Con-
sider an edge coloring of G with ∆(G) colors. If any two
vertices of G have distinct degrees, the cardinalities of its
sets of colors are different. Hence, any two sets of colors are
distinguishable. Therefore, χ′a(G) = ∆(G). This result is
presented in the following theorem of Zhang et al.

Theorem 5. [8] If G is a graph where the degree of every
two adjacent vertices are different, then χ′a(G) = ∆(G).

On the other hand, if G is a graph with two adjacent
maximum degree vertices u and v, then C(u) = C(v) for
any edge coloring of G with ∆(G) colors. This observation
implies a lower bound for the AVD chromatic index of G, as
follows.

Theorem 6. [8] If G is a graph with two adjacent ma-
ximum degree vertices, then χ′a(G) ≥ ∆(G) + 1.

The lower bound given by Theorem 6 is tight as the fol-
lowing two theorems show.

Theorem 7. [8] If G is a tree with |V (G)| ≥ 3, then

χ′a(G) =





∆(G), if there are no maximum
degree adjacent vertices;

∆(G) + 1, otherwise.

Theorem 8. [8] If Kn is a complete graph with n verti-
ces, then

χ′a(Kn) =

{
∆(Kn) + 1, if n is odd;
∆(Kn) + 2, if n is even.

Theorem 9. [8] If Km,n is a complete bipartite with 1 ≤
m ≤ n, then

χ′a(Km,n) =

{
n, if m < n;
n+ 2, if m = n > 1.

A proper total coloring of a graph G = (V (G), E(G)) is an
assignment of colors to V (G) ∪E(G) such that no adjacent
elements have the same color. The least number of colors
that allows a proper total coloring of a graph G is the total
chromatic number, denoted as χ′′(G). Chen et al. [2] deter-
mine the total chromatic number for complete split graphs,
presented in the next theorem.

Theorem 10. [2] Let G be a split graph. If ∆(G) is
even, then χ′′(G) = ∆(G) + 1.

Considering the complete split graphs, the known results
on the AVD chromatic index are presented below.

Theorem 11. [7] If G = [Q,S] is a complete split graph
and ∆(G) is odd, then χ′a(G) ≤ ∆(G) + 2.

Theorem 12. [7] Let G = [Q,S] be a complete split
graph where |Q| ≥ 2. If ∆(G) is even or |Q| ≤ |S|2 − |S|,
then χ′a(G) = ∆(G) + 1. If ∆(G) is odd and |Q| > |S|2,
then χ′a(G) = ∆(G) + 2.

Therefore, by Theorem 12, it remains to determine χ′a(G)
when ∆(G) is odd and |S|2−|S| < |Q| ≤ |S|2. For this case,
Vilas-Bôas and Mello presented the folowing conjecture.

Conjecture 13. [7] If G = [Q,S] is a complete split
graph, ∆(G) is odd, and |S|2 − |S| < |Q| ≤ |S|2, then
χ′a(G) = ∆(G) + 1.

Theorem 14 shows a characterization for split-indifference
graphs, which partition its vertex set into cliques. This par-
tition was used by Vilas-Bôas and Mello [7] on their results.

Theorem 14. [4] A graph G is an split-indifference graph
if and only if

1. G is a complete graph, or

2. G is the union of two complete graphs G1, G2, such
that G1 \G2 = K1, or

3. G is the union of three complete graphs G1, G2, and
G3, such that G1 \G2 = K1, G3 \G2 = K1, V (G1) ∩
V (G2) 6= ∅, and V (G1) ∪ V (G3) = V (G), or
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4. G is the union of three complete graphs G1, G2, G3,
such that G1 \G2 = K1, G3 \G2 = K1, and V (G1) ∩
V (G3) = ∅.

The Figure 2 shows a schematic representation of the split-
indifference graphs according to the characterization given
by Theorem 14, where each circle represents a clique with
its respective vertices.

G G1 G3G1 G1G2 G3G2 G2
(1) (4)(3)(2)

Figure 1: The four cases of the characterization of
split-indifference graphs according to Theorem 14.

Let G be a split-indifference graph. If G satisfies the Case
(1) of Theorem 14, the AVD chromatic index is determined
by Theorem 8. Consider that G satisfies the Case (2) of
Theorem 14. If |Λ(G)| = 1, then G is a tree and the AVD
chromatic index is determined by Theorem 7. If |Λ(G)| ≥
2, then χ′a(G) is determined by Vilas-Bôas and Mello, as
follows.

Theorem 15. [6] Let G be a split-indifference graph such
that G is the union of two complete graphs G1 and G2, and
G1 \ G2 = K1. If |V (G)| is odd and |Λ(G)| ≥ 2, then
χ′a(G) = ∆(G) + 1.

Theorem 16. [6] Let G be a split-indifference graph such
that G is the union of two complete graphs G1 and G2, and
G1 \G2 = K1. If |V (G)| is even and |Λ(G)| ≥ 2, then

χ′a(G) =

{
∆(G) + 1, if 2 ≤ |Λ(G)| ≤ 3∆(G)+1

4
;

∆(G) + 2, if |Λ(G)| > 3∆(G)+1
4

.

Consider that G satisfies Case (3) of Theorem 14. Suppose
without loss of generality that |V (G1)∩ V (G2)| ≥ |V (G2)∩
V (G3)|. There are two cases: when |V (G)| is odd and when
|V (G)| is even.

Theorem 17. [6] Let G be a split-indifference graph such
that G is the union of three complete graphs G1, G2, and
G3, G1 \G2 = K1, G3 \G2 = K1, V (G1)∩ V (G2) 6= ∅, and
V (G1) ∪ V (G3) = V (G). If |V (G)| is odd, then

χ′a(G) =





∆(G), if Λ(G) = 1 and
|V (G1) ∩ V (G2)| = |V (G2) ∩ V (G3)|;

∆(G), if Λ(G) = 1 and
|V (G1) ∩ V (G2)| = |V (G2) ∩ V (G3)|+ 2;

∆(G) + 1, otherwise.

Theorem 18. [6] Let G be a split-indifference graph such
that G is the union of three complete graphs G1, G2, and
G3, G1 \G2 = K1, G3 \G2 = K1, V (G1)∩ V (G2) 6= ∅, and
V (G1) ∪ V (G3) = V (G). If |V (G)| is even, then

χ′a(G) =





∆(G), if Λ(G) = 1;

∆(G) + 1, if Λ(G) > 3∆(G)+1
4

. and ;
∆(G) + 2, otherwise.

Finally, consider that G satisfies Case (4) of Theorem 14.
There are two cases: when |V (G)| is odd and when |V (G)|
is even.

Theorem 19. [6] Let G be a split-indifference graph such
that G is the union of three complete graphs G1, G2, G3,
where G1 \G2 = K1, G3 \G2 = K1, and V (G1) ∩ V (G3) =
∅. If |V (G)| is even, then χ′a(G) = ∆(G) + 1, otherwise,
χ′a(G) ≤ ∆(G) + 2.

When |V (G)| is odd, Vilas-Bôas and Mello [6] presented
the following partial results.

Theorem 20. [6] Let G be a split-indifference graph such
that G is the union of three complete graphs G1, G2, G3,
where G1\G2 = K1, G3\G2 = K1, and V (G1)∩V (G3) = ∅.
If |V (G)| is odd then

χ′a(G) =

{
∆(G) + 1, if |V (G1) ∩ V (G2)| ≤ ∆(G)+1

2
;

∆(G) + 2, if |V (G1) ∩ V (G2)| ≥ 3∆(G)+1
4

.

Now, it remains to consider the Case (4) when |V (G)| is

odd and ∆(G)+1
2

< |V (G1) ∩ V (G2)| < 3∆(G)+1
4

.

Theorem 21. [6] Let G be a split-indifference graph such
that G is the union of three complete graphs G1, G2, G3,
where G1\G2 = K1, G3\G2 = K1, and V (G1)∩V (G3) = ∅.
If |V (G)| is odd, |V (G1) ∩ V (G2)| = ∆(G)+1

2
+ p, |V (G2) \

(V (G1) ∪ V (G3))| ≥ p, where p is an integer, 0 ≤ p <
∆(G)−1

4
, and |V (G1) ∩ V (G2)| ≥ |V (G2) ∩ V (G3)|, then

χ′a(G) = ∆(G) + 1.

For the other cases, Vilas-Bôas and Mello posed Conjec-
ture 22.

Conjecture 22. [6] Let G be a split-indifference graph
such that G is the union of three complete graphs G1, G2,
G3, where G1 \ G2 = K1, G3 \ G2 = K1, and V (G1) ∩
V (G3) = ∅. If |V (G)| is odd, |V (G1)∩V (G2)| = ∆(G)+1

2
+p,

|V (G2) \ (V (G1) ∪ V (G3))| < p, where p is an integer, 0 ≤
p < ∆(G)−1

4
, and |V (G1)∩ V (G2)| ≥ |V (G2)∩ V (G3)|, then

χ′a(G) = ∆(G) + 2.

3. RESULTS
In this section we present the AVD chromatic index for

the split graphs that satisfies the hypothesis of conjectures
13 and 22.

To investigate the Conjecture 13, we consider a complete
split graph G = [Q,S] with odd ∆(G) and |S2|−|S| < |Q| ≤
|S2|. Then we construct a new graph G∗ by adding a new
vertex v∗ to G and connect v∗ to every vertex of Q. Since
G∗ has a universal vertex, χ′(G∗) = ∆(G∗) if and only if
G∗ is not overfull, by Theorem 3. The next lemma proves
that when G satisfies the hypothesis of the Conjecture 13,
the graph G∗ is not overfull.

Lemma 23. Let G = [Q,S] be a complete split graph with
odd ∆(G) and |Q| ≤ |S2|. If G∗ is the graph obtained from
G by adding a new vertex v∗ adjacent to every vertex of Q,
then G∗ is not overfull.

Proof. Let G = [Q,S] be a complete split graph with
odd ∆(G) and |Q| ≤ |S2|. Construct a graph G∗ from G,
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adding a new vertex v∗ and connecting v∗ to every vertex of

Q. Thus, |E(G∗)| = |E(G)|+|Q| = |Q|(|Q|−1)
2

+|Q||S|+|Q| =
|Q| |Q|+|S|

2
+ |Q| |S|

2
+ |Q|

2
. By hypothesis |Q| ≤ |S|2, then

|Q| |Q|+|S|
2

+ |Q| |S|
2

+ |Q|
2
≤ |Q| |Q|+|S|

2
+ |Q| |S|

2
+ |S|2

2
=

|Q| |Q|+|S|
2

+ |S| |Q|+|S|
2

. By hypothesis, ∆(G) = |Q|+ |S|−1

is odd, so |Q| + |S| is even. Then, |E(G∗)| ≤ |Q| |Q|+|S|
2

+

|S| |Q|+|S|
2

= (|Q|+ |S|)b |Q|+|S|+1
2

c = ∆(G∗)b |V (G∗)|
2
c.

Therefore, G∗ is not overfull.

The next theorem shows Conjecture 13 is true.

Theorem 24. If G = [Q,S] is a complete split graph,
∆(G) is odd, and |S2| − |S| < |Q| ≤ |S2|, then χ′a(G) =
∆(G) + 1.

Proof. Let G = [Q,S] be a complete split graph, with
odd ∆(G) and |S2| − |S| < |Q| ≤ |S2|. By the hypothesis,
|S| ≥ 2 and |Q| ≥ 4. So, G has maximum degree adjacent
vertices and χ′a(G) ≥ ∆(G) + 1 by Theorem 6.

We create a new graph G∗ by adding a new vertex v∗

to G and connect v∗ to every vertex of Q. Since G∗ has a
universal vertex, χ′(G∗) = ∆(G∗) if and only if G∗ is not
overfull, by Theorem 3. By Lemma 23, G∗ is not overfull.
Thus, consider an edge-coloring of G∗ with ∆(G∗) colors
and remove the vertex v∗.

The resulting graph is G with an AVD-edge-coloring. In
fact, the degree of each vertex in S is |Q| and the degree of
each vertex in Q is |Q| − 1 + |S|. Since |S| ≥ 2, we have
|Q| < |Q| − 1 + |S|. Then, for any pair of vertices v ∈ Q
and u ∈ S, |C(v)| > |C(u)| and therefore C(v) 6= C(u).
Moreover, there is exactly one color missing in each vertex
of Q. By construction, the colors missing in any two vertices
of Q are pairwise distinct, since this colors were used to color
edges incident to v∗. Hence, the sets of colors of any two
vertices in Q are different. Therefore, it is an AVD-edge-
coloring for G and χ′a(G) = ∆(G∗) = ∆(G) + 1.

Now, we prove that Conjecture 22 is true. LetG be a split-
indifference graph such that G is the union of three complete
graphs G1, G2, G3, where G1 \G2 = K1, G3 \G2 = K1, and
V (G1) ∩ V (G3) = ∅.

Theorem 25. Let G be a split-indifference graph without
universal vertex. If |V (G)| is odd, |V (G1)∩V (G2)| = (∆(G)+
1)/2 + p, |V (G2) \ (V (G1) ∪ V (G3))| < p, p ∈ Z, 0 ≤
p < ∆(G)−1

4
and |V (G1) ∩ V (G2)| ≥ |V (G2) ∩ V (G3)|, then

χ′a(G) = ∆(G) + 2.

Proof. Construct a graph G∗ by adding a vertex v∗ ad-
jacent to every maximum degree vertex of G. Observe that
∆(G) = |Q|, ∆(G∗) = |Q| + 1, and there is no universal
vertex in G∗.

Consider the induced subgraph H = G∗[V (G1)∪V (G2)∪
{v∗}]. Note that ∆(H) = ∆(G∗) and H has a universal
vertex. Now we will show that H is overfull and therefore,
G∗ is subgraph-overfull.

Note that the number of edges in the complement of H is
2|V (G2) \ (V (G1) ∪ V (G3))| + |V (G2) ∩ V (G3)| + 1. Since
|V (G2)∩V (G3)| = |Q|−|V (G2)\(V (G1)∪V (G3))|−|V (G1)∩
V (G2)|, the number of edges in the complement of H is
|V (G2) \ (V (G1)∪V (G3))|+ |Q| − |V (G1)∩V (G2)|+ 1. By
hypothesis, |V (G1)∩V (G2)| = (∆(G)+1)/2+p. Hence, the
number of edges in the complement of H is |V (G2)\(V (G1)∪
V (G3))|+ |Q| − (∆(G) + 1)/2− p+ 1 = |V (G2) \ (V (G1) ∪

V (G3))|+|Q|−(|Q|+1)/2−p+1 = ∆(H)
2

+|V (G2)\(V (G1)∪
V (G3))|−p. By hypothesis, |V (G2)\ (V (G1)∪V (G3))| < p.
Thus, the number of edges in the complement of H is less

than ∆(H)
2

, which implies thatH is overfull and consequently
G∗ is subgraph-overfull. So, χ′(G∗) = ∆(G∗) + 1.

Therefore, there is no edge coloring for G with ∆(G∗) =
∆(G) + 1 colors that allows pairwise distinct sets of colors
for the maximum degree vertices. So, χ′a(G) ≥ ∆(G∗)+1 =
∆(G) + 2. By Theorem 11, χ′a(G) = ∆(G) + 2.

4. CONCLUSION
Considering a complete split graph G, we conclude that

if V (G) has a partition into a clique Q and an independent
set S such that |Q| > |S|2 and ∆(G) is odd, then χ′a(G) =
∆(G) + 2, otherwise, χ′a(G) = ∆(G) + 1.

For split indifference graphs, four cases were considered,
according to the characterization of these graphs given by
Theorem 14. Before considering such cases it is importante
to note that if |Λ(G)| = 1, then G is a tree and the AVD
chromatic index is determined by Theorem 7. Then, the fol-
lowing conclusions are about graphs with |Λ(G)| ≥ 2. When
G is a complete graph, the AVD Edge Coloring Problem
is solved by Theorem 8. For the next cases, consider G1,
G2 and G3 as described in Theorem 14. When G is the
union of two complete graphs G1 and G2, the AVD chro-
matic index is determined by Theorems 15 and 16. When
G is the union of three complete graphs, G1, G2, and G3,
such that V (G1)∩V (G3) 6= ∅, the AVD-Edge Coloring Pro-
blem is solved by Theorems 17 and 18. Finally, if G is the
union of three complete graphs, G1, G2, and G3, such that
V (G1) ∩ V (G3) = ∅, then the AVD chromatic index is de-
termined by Theorems 19, 20, 21 and 25.

As a future work, we plan to investigate the AVD chroma-
tic indices of other split graphs, such as the split-comparability
graphs, a superclass of split-indifference graphs.
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