
Developing a secure SQL/key-value translation service

Davi Boberg
Universidade Tecnológica

Federal do Paraná
Curitiba, Brazil

daviboberg@alunos.utfpr.edu.br

Luiz Gomes-Jr
Universidade Tecnológica

Federal do Paraná
gomesjr@dainf.ct.utfpr.edu.br

Marcelo Rosa
Universidade Tecnológica

Federal do Paraná
Curitiba, Brazil

mrosa@utfpr.edu.br

Keiko Fonseca
Universidade Tecnológica

Federal do Paraná
Curitiba, Brazil

keiko@utfpr.edu.br

RESUMO
As cloud services are becoming an alternative for IT infras-
tructures in many organizations, data privacy guarantees
become a priority. This paper presents the development of
a secure database system using Intel’s SGX trusted plat-
form. SGX provides hardware-based processing privacy of-
fering protection for a wide range of sophisticated attacks.
We propose a modular, multi-service architecture that is well
suited to the advantages and limitations of the SGX plat-
form. This paper focuses on the ongoing implementation of
our SQL translation service.

Palvras-chave
Secure Databases; Cloud; SGX

1. INTRODUCTION
The continuous development and growing availability of

cloud services are changing the relationship between organi-
zations and their technological infrastructures. Several com-
mercial cloud providers currently offer products that provide
flexible scalability, high availability, and security to small
and large companies [3]. These products have become very
attractive given the potential to reduce costs when contras-
ted with in-house development and support of IT infrastruc-
tures.

Cloud services, however, can introduce security risks for
their clients: private data need to be transfered to the cloud
and become vulnerable to internal and external attacks in
the adopted platform. Cloud service providers often offer
a high level of security from external attacks, but internal
deliberate attacks are harder to predict and prevent. An in-
ternal personnel (e.g. a network administrator) could have
full privileges to access the sensitive information. Encryp-

WPCCG ’17 Outubro, 2017, Ponta Grossa, Paraná, Brasil
.

ting sensitive information would provide some protection,
but attackers with physical access to the servers could still
perform a physical attack to access decrypted information
in the memory

To address these shortcomings, we propose a secure data-
base architecture based on the Intel’s SGX1 technology [2].
SGX, a kind of trusted platform module, provides secure en-
claves where code runs in a protected and encrypted region
of the computer memory, even protected from attacks rela-
ted to physical access to that memory area. Unfortunately,
the current SGX standard has memory size limitations that
makes it impossible to implement a full-blown cloud and
BigData-ready database system inside a single enclave. Our
strategy is therefore to modularize the architecture and pro-
vide different levels of security and query capabilities. Here
we describe our architecture for a secure SQL-based cloud
database based on a secure key-value store, namely Choco-
lateCloud 2 (Section 2). We also describe ongoing efforts
for the implementation of the system as well as preliminary
experiments (Section 3).

1.1 Related Work
There has been several proposals for secure databases em-

ploying traditional encryption strategies [7, 1]. While these
proposals offer a reasonable level of security for data sto-
red in secondary memory, the systems are still vulnerable to
physical attacks where the opponent has direct access to the
computer’s primary memory. Homomorphic encryption [4],
a theoretical solution for this problem, has a performance
penalty of orders of magnitude, making it unsuitable for
cloud and BigData workloads.

Hardware support for encrypted in-memory processing is
an answer for the aforementioned performance issues. Intel’s
SGX [2] is currently the most comprehensive and commer-
cially available implementation of a trusted platform mo-
dule (TPM). As a TPM, it has abilities of (i) containing
a hardware encoded cryptographic key (known only by the
module); (ii) remote attestation (which means two enclaves
can trust each other through a modified Sigma protocol over
a Diffie-Helman Key Exchange, or DHKE, allowing them to
exchange cryptographic keys), (iii) sealing data (which me-

1https://software.intel.com/en-us/isa-extensions/intel-sgx
2http://www.chocolate-cloud.cc/

Anais do WPCCG’2017

1

ans once a data is sealed by the module, it can only unsealed
by that module). To the developer’s perspective, it ensures
that nothing can tamper with the code running inside such
modules. It also changes the way software are developed in
order to run safely from external attacks.

A practical approach to build a secure database is to use
simpler models for querying and storage, which reduces the
amount of code to be protected. The most basic model of
NoSQL database is the key-value, which uses arbitrary keys
to identify values stored as uninterpreted byte arrays. This
was the approach taken by the Chocolate Cloud project [8].
The service offers secure processing and communication th-
rough the use of the SGX architecture and guarantees con-
fidentially for the storage using network coding algorithms.

Network coding is based on splitting the information of
an item into parts stored at different locations. The recons-
truction of the original item can only be done by retrieving
multiple parts. This strategy guarantees confidentiality even
when some of the storage servers are compromised.

In our proposal we are using the Chocolate Cloud service
to provide secure data storage and retrieval. We are then
building more expressive modules to provide more flexibi-
lity while constraining intramodule complexity and system
vulnerability.

There has been other proposals to bridge the relational
model with simpler NoSQL models. For example, [6] pro-
poses mappings for key-value stores and document databa-
ses. Another approach is the new class of databases labeled
as NewSQL [5], which focus on providing BigData capable
systems that retain SQL and ACID capabilities. These pro-
posals however do not address the security issues described
here.

Figure 1: Service architecture

2. ARCHITECTURE AND SQL TRANSLA-
TION

We are building our secure database service in a modular
architecture. Independent modules are easier to fit in the
enclave’s limited memory and can be replicated for scalabi-
lity. The focus of this paper is the SQL translation engine,
which handles SQL queries and interacts with the underlying
key-value store module to answer requests. We are also de-

a) INSERT INTO reading
(<clientID>, <timestamp>, <read 1> ... <read 30>);

b) key: reading|<clientId>|<timestamp>
value: [<read 1> ... <read 30>]

Figure 2: Example an insert query (a) mapping into
a key-value pair (b). ClientID and timestamp com-
pose the primary key of the table and become part of
the mapped key. The table has 30 attributes omit-
ted for clarity.

veloping a data anonymization module for access control and
on-the-fly data anonymization (not covered in this paper).

Figure 1 shows the internal parts of the SQL translation
module and its interactions with the key-value store. Data
definition (DDL) queries are handled by the parser and have
their settings stored in the data dictionary. The schema and
keys define how each tuple will later be mapped to the key-
value model.

When a data manipulation (DML) query is received, a
dictionary lookup is performed to determine the mappings
between the models. For insertion queries, a key is compo-
sed by a concatenation of the table name and the primary
key(s) (a predefined separator is used for readability). Tuple
attributes are also concatenated to be stored as the value.
Figure 2a shows an insert query for a table named reading
that has the two first attributes as primary keys. Figure 2b
shows the resulting key-value pair generated. The key/value
pair is then submitted to the Chocolate Cloud store. For se-
lection queries the key is assembled with the table name and
the keys presented in the query, potentially with a wildcard
character (*) to retrieve all keys matching the prefix. Cur-
rently only queries with conditions over the primary keys
are supported. More flexible selects and joins are upcoming
developments.

A wider coverage of the SQL language will be implemen-
ted with extra indexes for non-key attributes – stored in the
key-value database. Joins on the primary keys can be imple-
mented efficiently since the Chocolate Cloud store returns
keys in alphabetical order, enabling the use of a merge-join
algorithm. Other joins can be implemented using the afo-
rementioned extra indexes or full table scans when indexes
are not available.

Table 1: Performance tests for select and insert que-
ries (in seconds)

Test
Processing Total Total

time time time/query
10 Selects 0.000171 3.0767 0.308
100 Selects 0.000189 28.5287 0.285
1000 Selects 0.000172 286.5795 0.286
10 Inserts 0.001626 4.1538 0.415
100 Inserts 0.013217 41.3288 0.413
1000 Inserts 0.13250 418.5262 0.418

3. EXPERIMENTS
We are developing and testing our solution based on a real

scenario and real data. The scenario is that of an electric

ISSN: 2526-1371

2

power company that collects usage summaries several times
per day for thousands of customers. The data are aggregated
in our database service and consumed by operational and
analysis applications such as billing, fraud detection, and
quality of service evaluation.

In the first prototype of our translation module, the code
was implemented in ANSI C. The module issues REST quests
to a ChocolateCloud database hosted in a cloud service in
Europe. Here we focus on initial tests of the translation
engine without the use of the SGX environment.

For these preliminary tests we used simple queries for in-
sertion (Figure 2) and selection of usage summaries. The
goal is to show that (i) our translation module has a small
impact in the overall query execution and (ii) that perfor-
mance scales linearly with the number of queries.

Figure 3: Evaluation of performance (total time) for
INSERT and SELECT statements

Table 1 shows performance tests for select and insert que-
ries over our service. We show results for increasing numbers
of elements in the queries (10, 100, 1000). The column pro-
cessing time represents the time taken in the translation of
the queries, including identifying query type, parsing, retri-
eving metadata and building the respective key-value que-
ries. The column total time represents the time to process
the query, retrieve and assemble the results. This time is
much higher because currently the key-value database is lo-
cated in a cloud server in Europe. In the future we plan to
have all modules running on the same cloud infrastructure
and expect significant reductions in query times. Finally,
the last column shows the total time divided by the number
of queries. All values are averages over 10 runs of the expe-
riments. The numbers show that the translation has little
impact on query performance. These results were expected
since our implementation is in C and the algorithms for pro-
cessing simple queries are straightforward. The results will,
however, serve as the baseline for the next iterations of our
implementation, especially when we embed the processing
in the SGX enclave and enable more complex queries.

Figure 3 shows results for total query processing times.
The graph shows the time taken for processing queries with
10, 100 and 1000 elements. The lines, drawn for reference,
shows the linear trend for scalability. Figure 4 shows results
for processing time (excluding time to query the key-value
store). Again, time for inserts grows linearly. Processing
time for selects remain constant because there is only one
query to be processed (only the size of the results change).

Figure 4: Evaluation of performance (processing
time) for INSERT and SELECT statements

Figure 5: Performance of CREATE TABLE statements

Finally, Figure 5 shows processing times for create table
queries (which currently only affect the internal data dicti-
onary). Again, these results were expected given the nature
of the algorithms and will serve as baseline for future tests.

4. CONCLUSION
This paper described our ongoing work towards the de-

velopment of a secure service to enable SQL queries to a
key-value store. The service is being integrated in Intel’s
SGX platform, which provides hardware-based privacy gua-
rantees. Our service translates SQL queries into key-value
calls to a Chocolate Cloud storage service. Chocolate cloud
also offers increased levels of security employing both SGX
and network coding algorithms.

We are currently working on the integration of our trans-
lation service with the SGX library developed by our rese-
arch group. The next steps include supporting more elabo-
rate SQL queries, query processing optimization, and per-

Anais do WPCCG’2017

3

formance tests. We are also working on another service to
complement the SQL translation that will be responsible for
role-based anonymization and access control.

5. ACKNOWLEDGMENTS
This research is being performed in the context of the

SecureCloud project. The SecureCloud project has recei-
ved funding from the European Union’s Horizon 2020 rese-
arch and innovation programme and was supported by the
Swiss State Secretariat for Education, Research and Inno-
vation (SERI) under grant agreement number 690111. This
work was partially funded by the EU-BR SecureCloud pro-
ject (MCTI/RNP 3rd Coordinated Call).

6. REFERÊNCIAS
[1] I. Basharat, F. Azam, and A. W. Muzaffar. Database

security and encryption: A survey study. International
Journal of Computer Applications, 47(12), 2012.

[2] V. Costan and S. Devadas. Intel sgx explained.
Technical Report 2016/086, Cryptology ePrint Archive,
2016.

[3] M. Cusumano. Cloud computing and saas as new
computing platforms. Commun. ACM, 53(4):27–29,
Apr. 2010.

[4] C. Gentry. Fully homomorphic encryption using ideal
lattices. In Proceedings of the Forty-first Annual ACM
Symposium on Theory of Computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

[5] A. Pavlo and M. Aslett. What’s really new with
newsql? SIGMOD Record, 45(2):45–55, 2016.

[6] G. A. Schreiner, D. Duarte, and R. dos Santos Mello.
Sqltokeynosql: a layer for relational to key-based nosql
database mapping. In G. Anderst-Kotsis and
M. Indrawan-Santiago, editors, iiWAS, pages 74:1–74:9.
ACM, 2015.

[7] E. Shmueli, R. Vaisenberg, Y. Elovici, and C. Glezer.
Database encryption: an overview of contemporary
challenges and design considerations. SIGMOD Record
(ACM Special Interest Group on Management of Data),
38(3):29–34, Sept. 2009.

[8] M. Sipos, P. J. Braun, D. E. Lucani, F. H. P. Fitzek,
and H. Charaf. On the effectiveness of recoding-based
repair in network coded distributed storage. Periodica
Polytechnica.Electrical Engineering and Computer
Science, 61(1):12–21, 2017. Copyright - Copyright
Periodica Polytechnica, Budapest University of
Technology and Economics 2017; Last updated -
2017-03-09.

ISSN: 2526-1371

4

